Bộ đề ôn thi Học sinh giỏi môn Toán 6 (Có đáp án)

 ĐỀ SỐ 14

Thời gian làm bài 120 phút

Bài 1(3 điểm).

 a.Tính nhanh:

A =

 b.Chứng minh : Với k N* ta luôn có :

 .

 Áp dụng tính tổng :

S = .

Bài 2: (3 điểm).

 a.Chứng minh rằng : nếu thì : .

 b.Cho A = Chứng minh : A 3 ; 7 ; 15.

Bài 3(2 điểm). Chứng minh :

 <>

Bài 4(2 điểm).

 a.Cho đoạn thẳng AB = 8cm. Điểm C thuộc đường thẳng AB sao cho BC = 4cm. Tính độ dài đoạn thẳng AC.

 b.Cho 101 đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau và không có ba đường thẳng nào cùng đi qua một điểm. Tính số giao điểm của chúng.

 

doc 86 trang Người đăng hoanguyen99 Lượt xem 662Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Bộ đề ôn thi Học sinh giỏi môn Toán 6 (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
đua lớp 6A được bao nhiêu điểm 10
Câu 5 (2đ)
 Cho 25 điểm trong đó không có 3 điểm thẳng hàng. Cứ qua 2 điểm ta vẽ một đường thẳng. Hỏi có tất cả bao nhiêu đường thẳng?
Nếu thay 25 điểm bằng n điểm thì số đường thẳng là bao nhiêu.
ĐÁP ÁN 
Bài 1
a. S = 
b. Ta có nếu thì 
Vậy A < B 
Bài 2
a. C = 2 + 22 + 23 + .. + 299 + 2100
= 2(1 +2 + 22+ 23+ 24) + 26(1 + 2 + 22+ 23+ 24)++ (1 + 2 + 22+ 23+ 24).296
 = 2 . 31 + 26 . 31 +  + 296 . 31 = 31(2 + 26 ++296). Vậy C chia hết cho 31
b. C = 2 + 22 + 23 + .. + 299 + 2100 à 2C = 22 + 23 + 24 + + 2100 + 2101
Ta có 2C – C = 2101 – 2 à 2101 = 22x-1 à2x – 1 = 101 à 2x = 102 à x = 51
Bài 3: 
Gọi số cần tìm là A: 
A = 4q1 + 3 = 17q2 + 9 = 19q3 + 13 (q1, q2, q3 thuộc N)
à A + 25 = 4(q1 +7) = 17(q2 +2) = 19(q3 + 2)
à A + 25 chia hết cho 4; 17; 19 à A + 25 =1292k
à A = 1292k – 25 = 1292(k + 1) + 1267
khi chia A cho 1292 dư 1267	
Bài 4
 Tổng số điểm của 10 lớp 6A là
(42 - 39) . 1 + (39 - 14) . 2 + (14 - 5) . 3 + 5 . 4 = 100(điểm 10)
Bài 5: 
	Có đường thẳng. Với n điểm có đường thẳng 
ĐỀ SỐ 25
Thời gian làm bài: 120 phút
Tính các giá trị của biểu thức.
	a. A = 1+2+3+4+.........+100
	b. B = -1
	c. C = 
So sánh các biểu thức :
	a. 3200 và 2300 
	b. A = với B = .
3. Cho 1số có 4 chữ số: Điền các chữ số thích hợp vào dấu (*) để được số có 4 chữ số khác nhau chia hết cho tất cả 4số : 2; 3 ; 5 ; 9.
4. Tìm số tự nhiên n sao cho : 1! +2! +3! +...+n!. là số chính phương?
5. Hai xe ôtô khởi hành từ hai địa điểm A,B đi ngược chiều nhau. Xe thứ nhất khởi hành từ A lúc 7 giờ. Xe thứ hai khởi hành từ B lúc 7 giờ 10 phút. Biết rằng để đi cả quãng đường AB . Xe thứ nhất cần 2 giờ , xe thứ hai cần 3 giờ. Hỏi sau khi đi 2 xe gặp nhau lúc mấy giờ?
6. Cho góc xOy có số đo bằng 1200 . Điểm A nằm trong góc xOy sao cho: . Điểm B nằm ngoài góc xOy mà :. Hỏi 3 điểm A,O,B có thẳng hàng không? Vì sao?
ĐÁP ÁN 
Câu 1 : Tính giá trị biểu thức :
Tổng : S =1 +2 +3 +...+100 có 100 số hạng .
 S = ( 1+ 100) + (2 +99) + (3 + 98) + ... + 950 + 51) có 50 cặp .
 = 50 . 10 = 5050
A = 
 Ta có : A = - = -
c). B = + + + +............+ 
Ta có : B = 1 - + -+ -+........+ - = 1 - = 
 2) Câu2. So sánh .
Ta có : 3200 =(32)100 = 9100 
 2300 =(23)100 =8100 
Vì 9100 > 8100 Nên 3200 > 2300 
A = 
 Vậy A = hay A =B = 
3). Để số có 4 chử số, 4chữ số khác nhau mà 4 chữ số chia hết cho cả 4 số 2; 5;3;9 .Ta cần thoả mản : Số đó đảm bảo chia hết cho 2 nên số đó là số chẳn.
Số đó chia hết cho 5 nên số đó phải có chữ số tận cùng là số 0 hoặc 5.Số đó vừa chia hết cho 3 và9 .Nên số đó phải có tổng các chữ số chia hết cho 9.
Vậy : Chữ số tận cùng của số đó là 0 *260 . Chữ số đầu là số 1
Do đó số đã cho là 1260
4 ) Bài 4. Tìm số tự nhiên n . Mà 1! +2!+3! +...+n! là bình phương của một số tự nhiên. 
Xét : n = 1 1! = 12
 n = 2 1! +2! = 3
 n=3 1! + 2! + 3! = 9 =32
 n = 4 1!+ 2! +3! + 4! =33
Với n >4 thì n! = 1.2.3.........n là mội số chẳn .Nên 1!+2!+......+n! =33 cộng với một số chẳn bằng sốcó chữ số tận cùng của tổng đó là chữ số 3 .Nên nó không phải là số chính phương.
 Vậy chỉ có hai giá trị n=1 hoặc n=3 thì 1! +2! + 3! +4! +.......+n!là số chính phương.
5 ) Giải
1 giờ xe thứ nhất đi đươc quảng đường AB.
1 giờ xe thứ 2 đi được quảng đường AB .
1 giờ cả 2 xe đi được += quảng đương AB. 
 Sau 10 phút = giờ : Xe thứ nhất đi được . = quảng đường AB.
Quảng đường còn lại là: 
1 - (của AB)
Thời gian hai xe cùng đi quảng đường còn lại là:
:= giờ = 1 giờ 6 phút.
Hai xe gặp nhau lúc 7 giờ 10 phút + 1 giờ 6 phút = 8 giờ 16 phút .
Đáp án : 8 giờ 16 phút. (0,25đ)
 6) Hình học. (tự vẽ hình) (2đ)
Vì : = 1200 , = 750, điểm A nằm trong góc xOy nên tia OA nằm giữa hai tia Ox và Oy. 
 Ta có : Điểm B có thể ở hai vị trí : B và B’. (0,75đ) 
+, Tại B thì tia OB nằm ngoài hai tia Ox, OA nên . Do đó . Nên 3 điểm A,O,B thẳng hàng. (0,75đ) 
+, Còn tại B’ thì : = 1350 < 1800, . Nên 3 điểm A,O, B’ không thẳng hàng.(0,5đ) 
-----------------------------------------------------------
ĐỀ SỐ 26
Thời gian làm bài: 120 phút
Câu 1: Tính tổng 
Câu 2: Tìm số tự nhiên a, b, c, d nhỏ nhất sao cho:
; ; 
Câu 3: Cho 2 dãy số tự nhiên 1, 2, 3, ..., 50
	a-Tìm hai số thuộc dãy trên sao cho ƯCLN của chúng đạt giá trị lớn nhất.
	b-Tìm hai số thuộc dãy trên sao cho BCNN của chúng đạt giá trị lớn nhất.
Câu 4: Cho bốn tia OA, OB, OC, OD, tạo thành các góc AOB, BOC, COD, DOA không có điểm chung. Tính số đo của mổi góc ấy biết rằng: ; ; 
HƯỚNG DẪN 
Câu 1: Ta có 
3A = 1 + 1/3 + 1/32 + ... + 1/399
vậy: 3A-A = (1 + 1/3 + 1/32 + ... + 1/399)-(1/3 + 1/32 + ... + 1/3100)
 2A= 1-1/3100 = (3100-1)/ 3100
 suy ra A= (3100-1) )/ 2.3100
Câu 2: Ta có 12/21= 4/7, các phân số 3/5, 4/5, 6/11 tối giãn nên tồn tại các số tự nhiên k, l, m sao cho a=3k, b=5k, b=4n, c=7n, c= 6m, d=11m. Từ các đẳng thức 5k=4n, và 7k = 6m ta có 4n5 và 7n 6 mà (4,5)=1; (7,6)=1 nên
n5, n 6 mặt khác (5,6) =1 do đó n 30
để các số tự nhiên a, b, c, d nhỏ nhất và phải khác 0 , ta chọn n nhỏ nhất bằng 30 suy ra: k =24, m=35
vậy a=72, b=120, c=210, d=385.
câu 3: Gọi a và b là hai số bất kì thuộc dãy 1, 2, 3, ..., 50. Giả sử a>b.
	a.Gọi d thuộc ƯC(a,b) thì a-b d ta sẽ chứng minh d ≤ 25 thật vậy giả sử d>25 thì b>25 ta có a ≤ 50 mà b>25 nên 0< a-b < 25, không thể xảy ra 
a-b d ; d=25 xảy ra khi a=50; b=25
vậy hai số có ƯCLN đạt giá trị lớn nhất là 50 và 25
	b. BCNN(a,b) ≤ a.b ≤ 50.49=2450 vậy hai số có BCNN đạt giá trị lớn nhất là 50 và 49
câu 4: (Học sinh tự vẽ hình) 
Ta thấy : 
vì nếu trái lại thì góc AOD có điểm trong chung với ba góc kia. Đặt = ỏ
ta có: ỏ +3ỏ+5ỏ+6ỏ=3600 ỏ = 240.
 Vậy:
---------------------------------------------------------- 
ĐỀ SỐ 27
Thời gian làm bài: 120 phút
Câu 1: (3đ).
	a. Kết quả điều tra ở một lớp học cho thấy: Có 20 học sinh thích bóng đá, 17 học sinh thích bơi, 36 học sinh thích bóng chuyền, 14 học sinh thích đá bóng và bơi, 13 học sinh thích bơi và bóng chuyền, 15 học sinh thích bóng đá và bóng chuyền, 10 học sinh thích cả ba môn, 12 học sinh không thích môn nào. Tính xem lớp học đó có bao nhiêu học sinh?
	b. Cho số: A = 1 2 3 4 5 6 7 8 9 10 11 12 .58 59 60.
	- Số A có bao nhiêu chữ số?
	- Hãy xóa đi 100 chữ số trong số A sao cho số còn lại là:
	+ Nhỏ nhất
	+ Lớn nhất
Câu 2: (2đ).
	a. Cho A = 5 + 52 +  + 596. Tìm chữ số tận cùng của A.
	b.Tìm số tự nhiên n để: 6n + 3 chia hết cho 3n + 6
Câu 3: (3đ).
	a. Tìm một số tự nhiên nhỏ nhất biết rằng khi chia số đó cho 3 dư 2, cho 4 dư 3, cho 5 dư 4 và cho 10 dư 9.
	b. Chứng minh rằng: 11n + 2 + 122n + 1 Chia hết cho 133.
Câu 4: (2đ). Cho n điểm trong đó không có 3 điểm nào thẳng hàng . Cứ qua hai điểm ta vẽ 1 đường thẳng. Biết rằng có tất cả 105 đường thẳng. Tính n?
ĐÁP ÁN 
Câu 1: (3đ).
a. Vẽ được sơ đồ cho (1,5đ).
- Số học sinh thích đúng 2 môn bóng đá và bơi: 14 – 10 = 4 (hs)
- Số học sinh thích đúng hai môn bơi và bóng chuyền: 13 – 10 = 3 (hs).
- Số học sinh thích đúng hai môn bóng đá và bóng chuyền: 15 – 10 = 5 (hs)
- Số học sinh chỉ thích bóng đá: 20 – (4 + 10 + 5) = 1 (hs)
- Số học sinh chỉ thích bơi: 17 – (4 + 10 + 3) = 0 (hs).
- Số học sinh chỉ thích bóng chuyền: 36 – (5 + 10 + 3) = 18 (hs).
Vậy: Số học sinh của lớp là: 1 + 0 + 18 + 4 + 10 + 5 + 3 + 12 + = 53 (hs).
b. (1,5 đ)
A = 1 2 3 4 5 6 7 8 9 10 11 12  58 59 60.
* Từ 1 đến 9 có : 9 chữ số
 Từ 10 đến 60 có: 51 . 2 = 102 chữ số.
Vậy: Số A có 9 + 102 = 111 chữ số. (0,5đ)
* Nếu xóa 100 chữ số trong số A thì số A còn 11 chữ số. Trong số A có 6 chữ số 0 nhưng có 5 chữ số 0 đứng trước các chữ số 51 52 53 . 58 59 60.
 Þ Trong số nhỏ nhất có 5 chữ số 0 đứng trước Þ số nhỏ nhất là số có 6 chữ số.
 Þ Số nhỏ nhất là 00000123450 = 123450 (0,5đ).
* Trong số A có 6 chữ số 9. Nếu số lớn nhất có 6 chữ số 9 đứng liền nhau thì số đó là: 99999960
 Þ Số này chỉ có 8 chữ só không thỏa mãn.
 Þ Số lớn nhất chỉ có 5 chữ số 9 liền nhau số đó có dạng 99999.
 Þ Các chữ số còn lại 78 59 60.
Vậy số lớn nhất: 99999785860.
Câu 2: (2,5đ).
a.(1,5đ).
 Þ A = 5 + 52 +  + 596 Þ 5A =52 + 53 +  + 596 + 597 
 Þ 5A – A = 597 - 5 Þ A = 
Tacó: 597 có chữ số tận cùng là 5 ® 597 – 5 có chữ số tận cùng là 0.
Vậy: Chữ số tận cùng của A là 0.
b. (1đ).
Có: 6n + 3 = 2(3n + 6) – 9
 Þ 6n + 3 chia hết 3n + 6 
Þ 2(3n + 6) – 9 chia hết 3n + 6
Þ 9 chia hết 3n + 6
Þ3n + 6 = ±1 ; ± 3 ; ±9
3n + 6
- 9
- 3
- 1
1
3
9
n
- 5
- 3
- 7/3
- 5/3
- 1
1
Vậy; Với n = 1 thì 6n + 3 chia hết cho 3n + 6.
Câu 3: (2,5đ).
a. (1đ).
Gọi số tự nhiên cần tìm là a (a > 0, a Î N)
Theo bài ra ta có:
- a chia cho 3 dư 2 Þ a – 2 chia hết cho 3
- a chia cho 4 dư 3 Þ a – 3 chia hết cho 4
- a chia cho 5 dư 4 Þ a – 4 chia hết cho 5
- a chia cho 10 dư 9 Þ a – 9 chia hết cho 10
Þ a = BCNN(3, 4, 5, 10) = 60.
b.(1,5đ).
11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n
=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12
Tacó: 133 . 11n chia hết 133; 144n – 11n chia hết (144 – 11) 
Þ 144n – 11n chia hết 133 Þ 11n + 1 + 122n + 1
Câu 4: (2đ).
Số đường thẳng vẽ được qua n điểm: 
Þ n .(n – 1) = 210 = 2 . 5 . 3 . 7 = 10 . 14
Þ n. (n – 1) = 6 . 35 = 15 . 14.
Vì n và n – 1 là 2 số tự nhiên liên tiếp nên: n = 14
Vậy n = 14.
-----------------------------------------------------------
ĐỀ SỐ 28
Thời gian làm bài: 120 phút 
Bài 1:(2,25 điểm)	Tìm x biết
	a) x+ 	b) 	x- 	c)(x-32).45=0
Bài 2:(2,25 điểm)	Tính tổng sau bằng cách hợp lý nhất:
	A = 11 + 12 + 13 + 14 + ..+ 20.
	B = 11 + 13 + 15 + 17 + ..+ 25.
	C = 12 + 14 + 16 + 18 + ..+ 26.
Bài 3:(2,25 điểm)	Tính:
A= 
B= 
C = 
Bài 4:(1 điểm)	
	Cho:	A= .	
	Hãy so sánh A và B.
Bài 5:(2,25 điểm)
Cho đoạn thẳng AB dài 7cm. Trên tia AB lấy điểm I sao cho AI = 4 cm. Trên tia BA lấy điểm K sao cho BK = 2 cm.
Hãy chứng tỏ rằng I nằm giữa A và K.
Tính IK.	
ĐÁP ÁN 
Bài 1:(2,25 điểm)
	a) x= ;	 b) x= ; 	c) x = 32
Bài 2:(2,25 điểm)	Tính tổng sau bằng cách hợp lý nhất:
a) A = (11 + 20) + (12 + 19) + (13 + 18) + (14 + 17) + (15+ 16) 
= 31 + 31 + 31	+31+ 31 = 31.5= 155	
b)	B = (11+25)+(13+23)+(15 + 21)+(17 +19) = 36.4 = 144.
c)	C = (12 +26)+(14+24)+(16 +22)+(18 +20) = 38.4 = 152.
Bài 3:(2,25 điểm)	Tính:
	A= 
	B= 
	C = 
Bài 4:(1 điểm)	
	Ta có: 	10A = 	(1)
	Tương tự: 10B = (2)
	Từ (1) và (2) ta thấy : 10A > 10BA > B
 Bài 5:(2,25 điểm)
A
a) Trên tia BA ta có BK = 2 cm.	BA = 7cm nên BK< BA do đó điểm K nằm giữa A và B. Suy ra AK + KB = AB hay AK + 2 = 7 AK = 5 cm. Trên tia AB có điểm I và K mà AI < AK (và 4 <5) nên điểm I nằm giữa A và K
b) Do I nằm giữa A và K nên AI + IK = AK. Hay 4 + IK = 5 IK = 5- 4 = 1.	
-------------------------------------------------------------
ĐỀ SỐ 29
Thời gian làm bài: 120 phút 
Bài 1: ( 3 điểm)
	a. Chứng tỏ rằng tổng sau khôngm chia hết cho 10:
	A = 405n + 2405 + m2 ( m,n N; n # 0 )
	b. Tìm số tự nhiên n để các biểu thức sau là số tự nhiên:
	B = 
	c. Tìm các chữ số x ,y sao cho: C = chia hết cho 55
Bài 2 (2 điểm )
	a. Tính tổng: M = 
	b. Cho S = . Chứng minh rằng : 1< S < 2
Bài 3 ( 2 điểm)
 Hai người đi mua gạo. Người thứ nhất mua gạo nếp , người thứ hai mua gạo tẻ. Giá gạo tẻ rẻ hơn giá gạo nếp là 20%. Biết khối lượng gạo tẻ người thứ hai mua nhiều hơn khối lượng gạo nếp là 20%. Hỏi người nào trả tiền ít hơn? ít hơn mâya % so với người kia?
Bài 4 ( 3 điểm)
 Cho 2 điểm M và N nằm cùng phía đối với A, năm cùng phía đối với B. Điểm M nằm giữa A và B. 
	Biết AB = 5cm; AM = 3cm; BN = 1cm. Chứng tỏ rằng: 
	a. Bốn điểm A,B,M,N thẳng hàng
	b. Điểm N là trung điểm của đoạn thẳng MB
	c. Vẽ đường tròn tâm N đi qua B và đường tròng tâm A đi qua N, chúng cắt nhau tại C, tính chu vi của CAN .
ĐÁP ÁN 
Bài 1 ( 3 điểm)
a.(1 điểm)
	Ta có 405n = .5 ( 0,25 điểm)
	2405 = 2404. 2 = (.6 ).2 = .2 ( 0,25 điểm)
	m2 là số chính phương nên có chữ số tận cùng khác 3. Vậy A có chữ số tận cùng khác không A 10
b. ( 1điểm) 
B = ( 0,25 điểm)
B = 	 (0,25 điểm )
Để B là số tự nhiên thì 	là số tự nhiên
 18 (n+2) => n+2 ư ( 18) = 	 (0,25 điểm)
+, n + 2= 1 n= - 1 (loại)
+, n + 2= 2 n= 0 
+, n + 2= 3 n= 1 
+, n + 2= 6 n= 4 
+, n + 2= 9 n= 7 
+, n + 2= 18 n= 16 
	Vậy n thì B N (0,25điểm	)	
c. (1 điểm)
	Ta có 55 =5.11 mà (5 ;1) = 1	 (0,25 điểm)	
	Do đó C =	55 	 (0.25 điểm)	 
(1) => y = 0 hoặc y = 5
+, y= 0 : (2) => x+ 9+5 – ( 1+9 +0)	11 => x = 7 (0,25 điểm)
+, y =5 : (2) = > x+9 +5 – (1+9+5 ) 11 => x = 1 (0,25 điểm)
Baì 2 (2 điểm)
a( 1điểm)
 M = = (0,25 điểm)
= ( 0, 25 điểm)
= ( 0,5 điểm)
b. (1 điểm) 
S = => S > (1) ( 0,5điểm) S= => S < (2) ( 0,5 điểm)
Từ (1) và (2) => 1 < S < 2
Bài 3: 
Gọi giá gạo nếp là a (đồng/kg) ; khối lượng gạo nếp đã mua là b (kg) (0,25 điểm)
Suy ra giá gạo tẻ là ; khối lượng gạo tẻ đã mua là ( 0,25 điểm)
Số tiền người thứ nhất phải trả là a.b (đồng) (0,25 điểm)
Số tiềng người thứ hai phải trả là a.b (0.75điểm)
Vậy người thứ hai trả ít tiền hơn người thứ nhất . Tỉ lệ % ít hơn là:
	 (0,5 điểm)
BÀI 4 
	Vẽ hình chính xác (0,5 điểm)
a. Bốn điểm A,B, M, N thẳng hàng vì chúng cùng nằm trên đường thẳng MN (0,5 điểm)
b. (1 điểm)
BM = AB – AM = 2 (cm) (0,25điểm)
M,N tia AB mà BM > BN ( 2 > 1) => N năm giữa B và M. ( 0,25 điểm)
MN = BM – BN = 1 cm = BN.=> N là đường trung điểm của BM . (0,5 điểm).
c. Đường tròn tâm N đi qua B nên CN = NB = 1 cm (0,25 điểm)
 Đường tròn tâm A đi qua N nên AC = AN = AM + MN = 4 cm (0.25 điểm)
Chu vi CAN = AC + CN = NA = 4 + 4+1= 9 (cm) (0,5 điểm)
ĐỀ SỐ 30
 Bài 1 : Tìm x biết 
 a ) x + (x+1) +(x+2) +...... +(x +30) = 620 
 b) 2 +4 +6 +8 +..............+2x = 210 
Bài 2 : a) chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
 b) cho A =( 17n +1 )(17n +2 ) với mọi n
Bài 3: Cho S = 1+3+32 +33+.........+348 +349
 a ) chứng tỏ S chia hết cho 4
 b) Tìm chữ số tận cùng của S 
 c) Chứng tỏ S =
Bài 4 : Tìm 2 số a ,b thoả mãn : 12a + 36b = 3211
Bài 5 : Cho (2a + 7b) ( a,b ) Chứng tỏ : (4a + 2b ) 
Bài 6 : Lấy 1 tờ giấy cắt ra thành 6 mảnh .Lấy 1 mảnh bất kỳ cắt ra thành 6 mảnh khác . Cứ như thế tiếp tục nhiều lần 
 Hỏi sau khi đã cắt một số mảnh nào đó ,có thể được tất cả 75 mảnh giấy nhỏ không ?
Giả sử cuối cùng đếm được 121 mảnh giấy nhỏ .Hỏi đã cắt tất cả bao nhiêu mảnh giấy ?
Bài 7 : Cho đoạn thẳng AB .Hãy xác định vị trí của điểm C trên đoạn thẳng AB sao cho 
 CA CB 
Bài 8 : Vẽ đoạn thẳng AB =5 cm .Lấy 2 điểm C ,D nằm giữa A và B sao cho : AC +BD=6 cm 
chứng tỏ điểm C nằm giữa B và D 
Tính độ dài đoạn thẳng CD
ĐÁP ÁN
Bài 1 :
 a) 31x + 
 x= 155 :31 = 5
 b) 210=2.3.5.7 =(2.7)(3.5)=14.15
 Vậy x= 14 
Bài 2 :
 a) gọi 3 số tự nhiên liên tiếp là x ,x+1, x+2 ( x 
 - Nếu x = 3k ( thoả mãn ) .Nếu x= 3k +1 thì x+2 =3k+1+2 =(3k +3 )
Nếu x = 3k +2 thì x +1 = 3k+1 +2 = (3k +3 ) 
 Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 
 b )Nhận thấy 17n , 17n +1 , 17n + 2 là 3 số tự nhiên liên tiếp mà 17n không chia hết cho 3 ,Nên trong 2 số còn lại 1 số phải 
 Do đó : A =( 17n +1 )(17n +2 ) 
 Bài 3: 
 a )Ta có : S = (1+3)+(32+33)+.......+(348+349) = 4+32(1+3)+......+ 348(1+4) 
 b ) S = (1+3+32 +33)+(34+35+36+37)+........+(344+345+346+347) +348 +349
 Các tổng 4 số hạng đều chia hết cho 10 ,do đó tận cùng bằng 0
 Mặt khác 338 + 349 = 34.12 + 348 .3 = .....1 + ....1 .3 = .............4 
 Vậy S có tận cùng bằng 4 
c ) S = 1+3+32 +33+.........+348 +349
 3S = 3 +3+32 +33+.........+348 +349+ 350 
 = 350 – 1 
 2S = 350 – 1 Suy ra S =
 Bài 4 : 
 Nhận thấy 12 a và 36 b mà 3211 không chia hết cho 4 , Vậy không có 2 số tự nhiên nào thoả mãn 
 Bài 5 : Ta có ( 6a + 9b ) hay ( 2a + 7b +4a + 2b ) .Mà (2a +7b ) 
 Nên (4a + 2b ) 
 Bài 6 :
a) Khi ta cắt 1 tờ giấy thành 6 mảnh thì số mảnh giấy tăng thêm 5 .Cắt nhiều lần như thế thì tổng số mảnh giấy tăng thêm 5k (k là tờ giấy đem cắt ) .Ban đầu chỉ có 1tờ giấy ,Vậy tổng số các mảnh giấy là 5k + 1
 Số này chia 5 dư 1 : vậy không thể có được tất cả 75 mảnh giấy nhỏ ( vì 75)
 b) Ta có 5k +1 = 121 k=24 .Vậy ta đã cắt được tất cả 24 mảnh giấy 
C
M
B
A
Bài 7 : 
Gọi M là trung điểm của AB suy ra MA = MB và M AB 
Xét 3 trừơng hợp 
 a ) C M ta có MA = MB suy ra CA = CB 
 b ) C nằm giữa A và M CA < MA CA < MB (1)
 M nằm giữa C và B nên MB < CB (2) 
 Từ (1) & (2) CA < CB 
 c ) C nằm giữa M và B CB < MB CB < MA ( 3)
 M nằm giữa A và C nên MA < CA (4) 
 Từ (3) và (4) CA < CB 
Tóm lại C MA thì ta luôn có CA CB 
B
C
D
A
Bài 8 : 
C nằm giữa A và B nên : AC + CB = AB = 5 
 Và AC + BD = 6 
 AC + CB < AC + BD CB < BD C nằm giữa D và B 
 b ) BD = BC + CD 
 vì AC + BD = 6 nên AC + BC + CD = 6 (BC + AC) + CD = 6 CD = 6 – AB = 6 -5 =1 
 Vậy CD = 1 
ĐỀ SỐ 31
Thời gian làm bài: 150 phút
Năm học 2009 - 2010
Câu 1 (2 điểm)	
	Tính
a/ A = b/ B = 	
Câu 2 (2 điểm)
a/ Chứng minh rằng: 1028 + 8 chia hết cho 72
b/ Cho A = 1 + 2 + 22 + 23 + . . . + 22001 + 22002	 B = 22003 So sánh A và B
c/ Tìm số nguyên tố p để p + 6; p + 8; p + 12; p + 14 đều là các số nguyên tố.
Câu 3 (2 điểm) Người ta chia số học sinh lớp 6A thành các tổ, nếu mỗi tổ 9 em thì thừa 1 em, còn nếu mỗi tổ 10 em thì thiếu 3 em.
Hỏi có bao nhiêu tổ, bao nhiêu học sinh ?
Câu 4 (3 điểm) Cho +ABC có BC = 5,5 cm. Điểm M thuộc tia đối của tia CB sao cho CM = 3 cm.
a/ Tính độ dài BM
b/ Biết BAM = 800; BAC = 600. Tính CAM Biết = 800; = 600. Tính 
c/ Tính độ dài BK thuộc đoạn BM biết CK = 1 cm.
Câu 5 (1 điểm)Chứng minh rằng:	 
ĐÁP ÁN
Câu 1: 
a/ A = 	(1 điểm)
b/ B = 	(1 điểm)
Câu 2:
a/ Vì 1028 + 8 có tổng các chữ số chia hết cho 9 nên tổng đó chia hết cho 9
Lại có 1028 + 8 có 3 chữ số tận cùng là 008 nên chia hết cho 8
Vậy 1028 + 8 chia hết cho 72	(1/2 điểm)
b/ Có 2A = 2 + 22 + 23 + . . . + 22002 + 22003 => 2A – A = 22003 – 1
=> A = B – 1. Vậy A < B.	(1/2 điểm)
c/ Xét phép chia của p cho 5 ta they p có 1 trong 5 dạng sau:
p = 5k; p = 5k + 1; p = 5k + 2; p = 5k + 3; p = 5k + 4 (k N; k > 0)
+ Nếu p = 5k thì do p nguyên tố nên k = 1 => p = 5
+ Nếu p = 5k + 1 => p + 14 = 5(k + 3) 5 và lớn hơn 5 nên là hợp số (loại)
+ Nếu p = 5k + 2 => p + 8 = 5(k + 2) 5 và lớn hơn 5 nên là hợp số (loại)
+ Nếu p = 5k + 3 => p + 12 = 5(k + 3) 5 và lớn hơn 5 nên là hợp số (loại)
+ Nếu p = 5k + 4 => p + 6 = 5(k + 2) 5 và lớn hơn 5 nên là hợp số (loại)
Thử lại với p = 5 thoả mãn	(1 điểm)
Câu 3:Giả sử có thêm 4 học sinh nữa thì khi chia mỗi tổ 10 em thì cũng còn thừa 1 em như khi chia mỗi tổ 9 em. Vậy cách chia sau hơn cách chia trước 4 học sinh. Mỗi tổ 10 học sinh hơn mỗi tổ 9 học sinh là: 10 - 9 = 1 (học sinh)
	(1 điểm)
Do đó số tổ là: 4 : 1 = 4 (tổ)	(1/2 điểm)
Số học sinh là: 4 . 10 – 3 = 37 (học sinh)	(1/2 điểm)
Câu 4: Vẽ hình, ghi giả thiết + kết luận	 (1/2 điểm)
a/ C nằm giữa B và M 
=> BC + CM = BM	(1/2 điểm)
=> BM = 3 + 5,5 = 8,5	(1/2 điểm)
b/ C nằm giữa B và M =>AC là tia 	
nằm giữa 2 tia AB và AM	 (1/2 điểm)
=> BAC + CAM = BAM
=> = – 
=> = 800 – 600 = 200(1/2 điểm)
c/ Xét 2 trường hợp:
+ Nếu K nằm giữa C và M tính được BK = BC + CK = 5,5 + 1 = 6,5 (cm)
+ Nếu K nằm giữa C và B tính được BK = 4,5 (cm)	(1/2 điểm)
Câu 5:Ta có:	 
(1/2 điểm)
(1/2 điểm)
ĐỀ SỐ 32
Đề th chọn học sinh giỏi lớp 6 chuyên toán ( Quận Ba Đình - Năm học 1991-1992)
Bài 1: ( 5 điểm )
Bài 2: ( 5 điểm )	Tìm hai số tự nhiên a,b thoả mãn điều kiện:
	a + 2b = 48 và (a,b) + 3 [a,b] = 114
Bài 3:	Hình học ( 6 điểm )
1. Cho 3 điểm A,B,C thẳng hàng và AB + BC =AC. Điểm nào nằm giữa hai điểm còn lại? Tại sao? 
2. Cho góc aOb và tia 0c nằm giữa hai tia Oa và Ob. Od là tia đối của tia Oc .Chứng minh rằng:
Tia Od không nằm giữa hai tia Oa và Ob.
Tia Ob không nằm giữa hai tia Oa và Od.
Bài 4: ( 4 điểm ) Tính tỷ số biết	
ĐÁP ÁN
Bài 1 
Bài 2:
A
6
12
18
24
30
36
42
B
21
18
15
12
9
6
3
(a,b)
3
6
3
12
3
6
3
[a,b]
42
36
90
24
90
36
42
(a,b) + [a,b]
129
114
273
84
114
114
129
Vậy a = 12; b = 18 hoặc a = 36 ; b = 6
Bài 4:
ĐỀ SỐ 33
Đề thi học sinh giỏi lớp 6 chuyên toán ( Quận Ba Đình - Năm học 1993-1994)
Câu 1: (6 điểm) Thực hiện tính dãy
Câu 2: (5 điểm) Tìm 2 số tự nhiên thoả mãn:
- Tổng của BSCNN và ƯSCLN của 2 số ấy là 174.
- Tổng của số nhỏ và trung bình cộng của 2 số ấy là 57
Câu 3 : (4 điểm) Cho 5 điểm A, B, C, D, E trong đó không có 3 điểm nào thẳng hàng.
- Có bao nhiêu đoạn thẳng mà mỗi đoạn thẳng nối 2 trong 5 điểm đã cho.Kể tên các đạon thẳng ấy.
- Có thể dựng được một đường thẳng không đi qua điểm nào trong 5 điểm đã cho mà cắt đúng 5 đoạn thẳng trong các đoạn thẳng nói trên không? Giải thích vì sao:
Câu 4 : (5 điểm) 
Lúc 8 giờ, một người đi xe đạp từ A đến B với vận tốc 12km /h. Lát sau người thứ 2 cũng đi từ A đến B với vận tốc 20km /h. Tính ra hai người sẽ gặp nhau tại B. Người thứ 2 đi được nửa quãng đường AB thì tăng vận tốc lên thành 24km /h. Vì vậy 2 người gặp nhau cách B 4 km.Hỏi 2 người gặp nhau lúc mấy giờ?
ĐÁP ÁN
Bài 1: =
Bài 2: (a,b) + [a,b] = 174 ; 3a + b = 114 Þ b M 3 ; [a,b] M 3 và 174 M 3 Þ (a,b) M 3 Þ a M 3 
 Mà 3a + b = 114 Þ 3a < 114 Þ a < 38
a..
3
6
9
12
15
18
21
24
27
30
33
36
b..
105
96
87
78
69
60
51
42
33
24
15
6
(a,b)
3
6
3
6
3
6
3
6
3
6
3
6
[a,b]
105
96
261
156
345
180
357
168
297
120
165
36
Tổng
108
112
264
162
348
186
360
174
300
126
168
42
Bài 4: 
	Hiệu vận tốc trên nửa quãng đường đầu là : 20 - 12 = 8 (km/h)
	Hiệu vận tốc trên nửa quãng đường sau là : 24 - 12 = 12 (km/h)
	Hiệu vận tốc của nửa quãng đường đầu theo dự định bằng 2/3hiệu vận tốc trên nữa quãng đường sau. Chỉ xét nửa quãng đường sau thời gian xe II đuổi kịp xe I trên thực tế bằng 2/3thời gian xe hai đuổi kịp xe I theo dự định
	Thời gian hai xe đuổi kịp nhau sớm hơn là : 4: 12 = h = 20 '
	Thời gian hai xe đuổi kịp nhau theo dự định: 20 . 3 = 60 ' = 1h
	Thoì gian xe hai cần để đuổi kịp xe một trên cả quãng đường : 1 . 2 = 2h
	Quãng đường xe I đi trước là: 16 : 2 = h = 1h 20'
	Thời gian hai xe gặp nhau theo dự định: 8 h + 1h 20' +2h = 11h 20'
	Do hai xe trên thực tế gặp nhau sớm hơn dự định 20' 
	Hai xe gặp nhau lúc 11h 20' - 20' = 11h
ĐỀ SỐ 34
Đề thi chịn học sinh giỏi lớp 6 chuyên toán (

Tài liệu đính kèm:

  • docGiao_an_cuc_hay.doc